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Abstract

Mangroves provide extensive ecosystem services that support local livelihoods and interna-

tional environmental goals, including coastal protection, biodiversity conservation and the

sequestration of carbon (C). While voluntary C market projects seeking to preserve and

enhance forest C stocks offer a potential means of generating finance for mangrove conser-

vation, their implementation faces barriers due to the high costs of quantifying C stocks

through field inventories. To streamline C quantification in mangrove conservation projects,

we develop predictive models for (i) biomass-based C stocks, and (ii) soil-based C stocks

for the mangroves of the Asia-Pacific. We compile datasets of mangrove biomass C (197

observations from 48 sites) and soil organic C (99 observations from 27 sites) to parameter-

ize the predictive models, and use linear mixed effect models to model the expected C as a

function of stand attributes. The most parsimonious biomass model predicts total biomass C

stocks as a function of both basal area and the interaction between latitude and basal area,

whereas the most parsimonious soil C model predicts soil C stocks as a function of the loga-

rithmic transformations of both latitude and basal area. Random effects are specified by site

for both models, which are found to explain a substantial proportion of variance within the

estimation datasets and indicate significant heterogeneity across-sites within the region.

The root mean square error (RMSE) of the biomass C model is approximated at 24.6 Mg/ha

(18.4% of mean biomass C in the dataset), whereas the RMSE of the soil C model is esti-

mated at 4.9 mg C/cm3 (14.1% of mean soil C). The results point to a need for standardiza-

tion of forest metrics to facilitate meta-analyses, as well as provide important considerations

for refining ecosystem C stock models in mangroves.
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Introduction

Recent studies have identified mangrove forests as carbon (C) rich ecosystems, with substantial

stocks of C found in both their living tree biomass and soils [1–4]. C-rich ecosystems carry

special value under existing international efforts to reduce greenhouse gas emissions, as con-

version of these lands to other uses results in large CO2 emissions [5, 6]. Mangroves also pro-

vide a range of benefits beyond the sequestration of C, such as the support of local livelihoods,

biodiversity conservation, water filtration, coastal protection, and nutrient cycling [1, 7–11].

Given both their C-rich nature as well as their socio-economic importance, mangrove conser-

vation is increasingly emphasized as an evident opportunity for joint climate change mitiga-

tion (reduction of greenhouse gas emissions) and adaptation (increasing resiliency to climate

change induced stressors) projects [12, 13].

Nevertheless, mangroves remain highly threatened from both direct and indirect anthropo-

genic pressures despite their established importance [8, 14–16]. Mangroves have historically

been under direct pressure from aquaculture (e.g., shrimp farming), which is often deemed an

economically more productive activity than alternative, less-destructive land use options [4,

17]. Recent research has shown that expansion of oil palm plantations, rice paddies, and

coastal urban development have also been substantial but over-looked land-use competitors

for Southeast Asian mangroves from 2000–2012 [18]. Furthermore, mangroves are projected

to be adversely impacted by rising mean sea levels, which may alter hydrological regimes, shift

species compositions, or drown entire forest stands [4, 19, 20].

The substantial C stocks of mangroves suggest that payments for their conservation through

C forestry mechanisms (CFMs) could be effective in simultaneously mitigating atmospheric

CO2 levels, securing non-C ecosystem services, and providing benefits to local livelihoods [1,

21–23]. However, CFM initiatives currently experience a range of implementation challenges,

including the difficulty of quantifying forest C stocks through measuring, reporting, and veri-

fying (MRV) activities and the scale of their associated costs [24–26]. Soft soils, complex

aboveground root systems, and tidal windows constrain accessibility in mangroves, which ren-

der MRV activities particularly difficult to implement and often necessitate the involvement of

specialists. These challenges are especially likely to impose economic limits on the inclusion of

less extensive, yet ecologically and socioeconomically important, patches of mangroves in

CFM projects [25]. As a response to the challenges of CFM MRV activities, practitioners are

now seeking more efficient means of obtaining robust and transparent quantification of C

stocks in both mangroves and tropical forests more generally [27, 28].

The use of statistical regression models that correlate well with C stocks is one potential

means of reducing the cost of MRV activities [29]. Predictive models of mangrove biomass (a

proxy for live C stocks) have been examined, although infrequently, in past decades. One of

the first models examined the relationship between mangrove tree height and soil salinity in

Puerto Rico [30]. Other attempts have correlated mangrove biomass to latitudinal distance

from the equator, which is understood to have a negative impact on mangrove tree growth

[31]. More recent attempts have produced global maps of both mangrove biomass C and soil

organic C (SOC) from climatic datasets and regional indicator variables [32, 33]. These models

primarily predict at the global scale, sacrificing accuracy for widespread applicability, and thus

there may be room for improvement in predictive power at the micro- or meso-scale by incor-

porating site-level parameters such as forest structure or species composition. Predicting C

stocks at the site-scale is expected to help operationalize CFMs and other mangrove conserva-

tion efforts that require valuation of ecosystem services.

Mangroves exhibit spatial variation in both the presence and abundance of plant species, as

well as in tree size and total biomass across intertidal zones [34]. This phenenomenon is
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termed “zonation,” and likely has significant implications for C stocks [29, 35–37]. The domi-

nant genera of mangrove trees present in a given stand dictate tree morphology and wood den-

sity, which are likely to be efficient predictors of biomass C stocks [2]. Additionally, the

dominant genera of a stand may be indicative of tidal position, which may dictate the rate of

organic matter decomposition in soils. Recent studies have found evidence that species com-

position and SOC stocks covary with intertidal zone [29, 37]. Similarly, other research that

investigated spatial variation in soil CO2 fluxes, an indicator of organic matter decomposition,

found significant variation with intertidal zone [38]. Recent studies in terrestrial tropical

biomes more generally have identified the presence of “hyperdominant” species (i.e. species

that comprise less than 2% of the total species count but more than 50% of biomass) as habitat

specialists, which may parallel the phenomenon of zonation in mangroves [39–41]. Although

site-specific parameters such as dominant genera or forest structure are challenging to incor-

porate in models that are global in scope, they are feasible in models intended to be imple-

mented at the micro- or meso-scale.

This paper presents predictive models of biomass-based and soil-based C stocks in man-

groves that employ latitude, forest structure and species composition parameters as potential

predictors. We hypothesize that by including forest structure and composition parameters,

more precise estimates of site-specific mangrove C can be achieved. Furthermore, it is not

always clear whether other predictive models of mangrove C stocks within the academic lit-

erature account for spatial correlation across sites, which can inflate the model’s degrees of

freedoms and induce narrower error bounds than is appropriate. By employing a linear

mixed effects model, we can account for spatial autocorrelation within the dataset and avoid

the risk of inflated estimates of model precision, as well as make inferences on how variation

in mangrove C stock per unit area estimates vary both within and across sites. The models

presented in this paper comprise one output of the “Income for coastal communities for

mangrove protection project”, which is implemented by the Mangroves for the Future

regional programme in partnership with the United Nations Food and Agriculture Organi-

zation and the United States Agency for International Development’s Lowering Emissions in

Asia’s Forests program.

Methods

Literature search and data quality

To parameterize the C stock model, we conducted an extensive review of major academic data-

bases. The terms “mangrove” plus “biomass,” “C stocks,” “ecosystem C” and “C sequestration”

were searched for within Google Scholar, Web of Science, ScienceDirect, and Springer. From

there, we identified additional studies via those referenced within relevant articles, as well as

through colleagues in the Asia-Pacific region.

As literature on mangrove C stocks reports a range of forest structure parameters and sam-

pling methods, we made a judicious effort to compile subsets of data for studies that reported

comparable stand-level estimates for each of (i) height, (ii) mean stem diameter at breast

height (1.37 m; DBH), (iii) mean stem density, and (iv) mean basal area. For studies that

reported two of the last three structure parameters, the third was estimated algebraically (e.g.,

computing basal area as a function of mean stand diameter and mean stem density). To limit

the variation across aggregate forest structure parameter estimates, only studies that employ a

sampling cut-off of stem diameters 5 cm or less were included in the dataset. The augmented

variance from small fluctuations in sampling design (i.e. a cutoff of 2.5 cm versus 5 cm) is tol-

erated and ultimately reflected in the model fit.
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Field sampling for additional data

In addition to legacy data from the literature, we sampled ecosystem C stocks at two sites in

south Thailand and three sites in north Vietnam from May to August of 2015. Research per-

missions were obtained from the Department of Agriculture and Rural Development in Viet-

nam, and the Royal Forest Department of Thailand. All sampling at sites with planted

mangroves were publicly owned, and thus no additional permissions from private owners

were required.

The field sampling methods generally follow those outlined by Kauffman and Donato [42].

We randomly located transects, each consisting of five to six circular subplots of 7 m radius,

oriented perpendicularly to the coastline. All stem diameters (DBH� 5 cm) were measured

within the subplot, whereas saplings (DBH < 5 cm and height� 1.37 m) and seedlings

(height < 1.37 m) were measured within a nested 2 m radius subplot. We converted tree diam-

eters to kg of dry-weight biomass and subsequently kg of C via species-specific allometric

equations, or a general equation with species-specific wood densities when species-specific

equations were not available. All stem measurements were taken at the appropriate species-

specific stem positions following predesignated allometric equations. Additionally, soil cores

up to 2 m depth were taken at two randomly selected subplots along each transect. Subsamples

from each of the 0–15, 15–30, 30–50, 50–100, and 100–200 cm depth intervals were analyzed

for bulk density and percent organic C via dry combustion. Additional details on the sampling

design, soil analysis, and allometric equations are provided in the S1 File of the Supporting

Information.

Development of the predictive models

For the development of the predictive models, we specify two response variables. For the bio-

mass C model, the response variable is biomass C in Mg C/ha whereas for the SOC model, the

response variable is SOC in g/cm3. The rationale behind predicting SOC per cm3 rather than per

ha is that soil depth in mangroves is believed to be highly variable and would likely break down

predictive relationships between SOC stocks and forest structure or species composition param-

eters. If accurate estimates of SOC in g/cm3 can be obtained, predicted SOC values can be easily

coupled with inexpensive field soil depth measurements to obtain site-wide estimates of SOC.

Mangrove C stock data is sparse within the published literature. Commonly, these data

arise from disparate sampling methods and reporting of forest structure parameters. As such,

a multiple-linear regression model that employs mixed effects is most appropriate as it allows

for the preservation of spatially-correlated observations, and thus the maximum dataset size.

Mixed effects models are useful in their specification of both “fixed” as well as “random”

effects. Although fixed and random effects have varied definitions within the academic litera-

ture, we refer to them here following Kreft and Leeuw’s [43] definitions: fixed effects, which

explain variation in the dataset expected to hold across the entire population of data, versus

random effects, which explain variation unique to specific groupings (i.e. site) of the data.

Mixed effects models are increasingly used as a means of dealing with simple spatial pseudore-

plication in the academic literature, particularly within island biogeography studies [44–46].

By specifying a mixed effects model to predict mangrove C stocks, we can preserve clustered

observations from single sites and avoid discarding of valuable data.

We consider fixed effects for four forest structure parameters, namely forest height, mean

DBH, mean stem density, and mean basal area, as well as the dominant genera of the plot, the

geomorphic condition (i.e. marine vs estuarine) and latitude, whereas we specify random effects

by site. It is understood that C stocks will be spatially correlated within sites, as common factors

such as annual temperatures, rainfall, soil quality, tidal regime, or anthropogenic disturbance
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patterns will impact site productivity. We assume that the effects of forest structure (e.g., DBH

or basal area) are constant across sites, and thus we only examine random intercepts (i.e. no

random slopes) for site. Furthermore, by specifying fixed effects interactions between latitude

and structural parameters, we can account for the influence that any latitudinal changes in rain-

fall and insolation may have on forest structure without specifying random slope effects for

these predictors. The specification of slope coefficients as fixed effects ensures that the major

predictive effects will be applicable across all mangroves within the broader Asia-Pacific region.

The most parsimonious model is achieved by elimination of non-significant covariates using

chi-squared testing at the 5% significance level (p = 0.05), and is specified as

Yi ¼ bi � Xi þ bi þ �i ð1Þ

where Yi is the dependent variable for the ith observation, Xi is a row vector of f fixed predictor

variable values including an intercept, βi is a vector of fixed effect coefficients, bi is a vector of

random effect intercepts, and �i is the random deviation from expectation. To examine the vari-

ation explained by fixed versus random effects, we employ marginal and conditional R2 values

via the ‘MuMin’ package of Program R [47–49]. Marginal R2 values are representative of the

percent variation explained by the fixed effects, whereas the conditional R2 values are represen-

tative of the percent variation explained by both the fixed and random effects [47]. Both the bio-

mass and SOC models are parameterized using all predictor variables initially, followed by one-

by-one elimination of non-significant variables (p>0.05) and starting with the predictor of

least significance (highest p-value) first. After elimination of a single non-significant predictor

variable, the model was reparameterized and the process repeated until all predictor variables

were significant at the 5% level. Additionally, logarithmic transformations for all predictor vari-

ables in both models are examined, though a preference is given for untransformed predictors.

We fit all models using maximum likelihood estimation for elimination of non-significant fixed

effects parameters, whereas we derive the final model parameters using restricted maximum

likelihood estimation. All modeling is performed with the ‘lme’ function of the ‘nlme’ package

of R [50].

Model validation

The presence of random effects in mixed effects models creates complications for validation

procedures. For true out-of-sample validation, entire groups (i.e. sites) must be withheld dur-

ing model validation, or else the model runs the risk of being “trained” on observations from

the same sites as observations included in the validation set. Thus, the model is validated by

both goodness of fit measures and randomly selecting and withholding approximately 15% of

the sites for out-of-sample validation. The limitations of data availability necessitate that 15%

as opposed to the conventional one-third of data is withheld for validation procedures. Follow-

ing validation, the model is re-parameterized with the full dataset to obtain as statistically

robust a model as possible. By examining shifts in the model coefficients obtained from param-

eterization with the full dataset versus the model coefficients obtained during the validation

procedures (i.e. a reduced estimation dataset), we can assess the reliability of the parameters

for predictive purposes.

Results

Compiled literature dataset

We retrieved plot-specific dry-weight biomass or dry-weight biomass C including both above-

and belowground stocks from a total of 197 observations from 48 sites. Of these observations,
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136 observations reported mean DBH, 66 reported mean height, 181 contained estimates of

basal area per ha, and 180 reported stem density. Studies reporting SOC estimates were consid-

erably fewer. For SOC, a total of eight studies reported 99 observations from 27 sites (including

the empirical measurements of this study). All studies reported the dominant genus of tree

present in the plot. The geographic distribution of the biomass C observations is shown in

Fig 1. A full accounting of the studies employed in the model fitting, as well as the forest struc-

ture parameters reported, are given in the S2 File of the Supporting Information.

Biomass C model

The most parsimonious biomass C model included fixed effects for both basal area and the

interaction between basal area and latitude, as well as random effects for site. The fixed effects

specifications for mean DBH, mean canopy height, mean stem density, and dominant genera

of tree were not significant at the 95% level, and thus were removed from the model. Addition-

ally, the fixed effect for latitude was not significant following inclusion of the basal area and lat-

itude interaction, and thus it also was removed from the final model. Transformations were

not applied to the response variable to avoid correction of back-transformation bias.

Fig 1. Geographic distribution of data observations. The mapped points represent sites from which plot specific estimates of either biomass C or SOC

stocks exist. The administrative boundaries of the countries shown in Fig 1 are adapted from the Natural Earth free open map data.

doi:10.1371/journal.pone.0169096.g001
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The model was validated by withholding all observations from seven sites randomly

selected from the parameterizing dataset (i.e. 15% of all sites), and comparing the observed

versus predicted values of biomass C stocks for these sites. The validation procedure was run

250 times to examine the distributions of the derived model coefficients and the root mean

square error (RMSE). Given that the data are unbalanced (i.e. unequal numbers of observa-

tions across sites), the total number of observations withheld during the validation runs varied

depending on which sites were randomly selected into the validation set. The average number

of observations withheld when randomly selecting seven sites was 29, or approximately 18% of

the full dataset. The RMSE between the observed and predicted values of Mg C/ha was 37.7

Mg/ha, approximately 28.2% of the average Mg C/ha value across all sites (133.8 Mg C/ha).

However, we note that this value is without the inclusion of random intercepts. The mean val-

ues and standard deviations for the number of observations withheld, the model coefficients,

and the RMSE are displayed in Table 1.

The statistics of the model estimated via the full dataset are displayed in Table 2. The best

linear unbiased predictors (BLUPs) for the random site effects are provided in the S3 File of

the Supporting Information. Following the inclusion of the BLUPs, the RMSE for the differ-

ence between the observed and predicted values is yielded at 24.6 Mg/ha, or 18.4% of the aver-

age Mg C/ha value across all sites. Observed versus predicted plots for the model estimates

based on fixed effects only and both fixed and random effects are shown in Fig 2.

SOC model

The most parsimonious SOC model included fixed effects for the logarithmic transformations

of both latitude and basal area, as well as random effects for site. An investigation of the mar-

ginal R2 (49.1%) and conditional R2 (89.9%) values reveals that a substantial proportion of the

model’s explanatory power is housed within the specification of random effects. None of the

other structural predictors nor dominant vegetation genus within the plot (eight levels, speci-

fied for Aegiceras, Avicennia, Bruguiera, Ceriops, Excoecaria, Kandelia, Rhizophora, and Son-
neratia) were found to be significant predictors at the 95% level. The observed versus

predicted plots following prediction via both (i) fixed effects only and (ii) mixed effects reveal

the power of including the random effect BLUPs for site, as the variation around the one-to-

one identity line is considerably greater for the fixed effects only prediction.

Table 1. Results of the biomass model validation procedures.

Mean value Standard deviation

Observations withheld 29 8

Intercept; (β0) -8.52 3.00

Basal area; (β1) 5.75 0.20

Basal.area:Latitude; (β2) -0.13 0.02

RMSE (Mg C/ha) 35.94 8.30

doi:10.1371/journal.pone.0169096.t001

Table 2. The statistics of the model estimated via the full biomass C dataset.

Term Covariate Value Std. Error Deg. Freedom p-value

β0 Intercept -8.43 3.32 118 0.012

β1 Basal area 5.76 0.10 118 <0.001

β2 Basal area:Latitude interaction -0.13 0.01 118 <0.001

doi:10.1371/journal.pone.0169096.t002

Mixed Effect Modeling of Mangrove C Stocks in the Asia-Pacific
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The model was validated by withholding all observations from four sites (15% of the SOC

dataset) for each paramaterization/validation run. Similar to that of the biomass model, we ran

the validation procedure a total of 250 times (randomly selecting the four sites for withholding

each time) to examine the distributions of the derived model coefficients and RMSE. The

mean number of observations withheld was 19 observations (from a total dataset size of 99

observations), or approximately 20% of the full dataset. The RMSE between the observed and

predicted SOC values of the validation procedure was 13.5 mg/cm3, or approximately 38.0% of

the mean SOC value across the full dataset. The full results of the SOC model validation proce-

dure are given in Table 3. It is important to note that the validation procedure has used pre-

dicted values from only the fixed effects component of the model, and thus for sites in which

the random effects BLUPs could be estimated, we can assume the uncertainty levels of the

SOC model will decrease.

Following the model validation procedure, we fit the model on the full dataset. The RMSE

value of the fixed effects only model is estimated at 13.4 mg C/cm3, or approximately 38.6% of

Fig 2. Observed versus predicted plots for the biomass C model. Panel A corresponds to estimation via the fixed effects parameters only,

whereas panel B corresponds to inclusion of the random effects. The plotting symbols are colored by country and the symbols correspond to site within

country. The key to the country/site codes is provided in S3 File. The red line represents a one-to-one “perfect fit” around which the data should

aggregate.

doi:10.1371/journal.pone.0169096.g002

Table 3. Results of the SOC model validation procedures.

Mean value Standard deviation

Observations withheld 19 11

Intercept; (β0) 38.71 2.89

Latitude; (β1) -11.24 0.91

Basal.area; (β2) 4.53 0.42

RMSE (mg C/cm3) 13.47 3.28

doi:10.1371/journal.pone.0169096.t003
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the mean SOC value (34.6 mg C/cm3) across the dataset, whereas the RMSE value of the mixed

effects model is estimated at 4.89 mg C/m3 (approximately 14.1% of the mean SOC value). The

final model parameters are provided in Table 4, and the observed vs. predicted plots following

model estimation with both fixed effects only and mixed effects are shown in Fig 3.

Discussion

The predictive model of mangrove biomass C stocks performs well. The higher predictive

capability of basal area over the other forest structure parameters is primarily a result of

accounting for both mean tree diameter as well as mean stem density. For the same reasons,

basal area may better account for forest degradation induced from selective logging whereas

other forest structure parameters (e.g., height or mean stem diameter) and ecological variables

(e.g., climatic conditions) do not. As low temperatures are known to stunt mangrove growth,

the interaction between latitude and basal area does well to correct the model at sites of higher

latitude, which may exhibit lesser standing volumes of mangrove biomass for a given basal

area per ha estimate [31]. The finding that basal area is a significant predictor of mangrove bio-

mass C has important implications for estimating biomass C, as basal area estimates can be

Table 4. The statistics of the model estimated via the full biomass C dataset.

Term Covariate Value Std. Error Deg. Freedom p-value

β0 Intercept 38.62 7.11 73 <0.001

β1 log(Latitude) -11.31 2.31 73 <0.001

β2 log(Basal area) 4.48 1.45 73 0.003

doi:10.1371/journal.pone.0169096.t004

Fig 3. Observed versus predicted plots for the soil organic C model. Panel A corresponds to estimation via the fixed effects parameters only, whereas

panel B corresponds to inclusion of the random effects. The plotting symbols are colored by country, whereas the symbols correspond to site within country.

The key to the country/site codes is provided in S3 File. The red line represents a one-to-one “perfect fit” around which the data should aggregate.

doi:10.1371/journal.pone.0169096.g003
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obtained via horizontal point sampling (e.g., the use of angle gauges, relascopes, or similar

instruments). Horizontal point sampling requires substantially less time and energy in the

field than conventional measurements (i.e., establishment of plots and measurements of stem

diameters), and may help streamline biomass C quantification in mangroves. The value of

basal area as a streamlined predictor of stand-level biomass C stock estimates has been noted

by others [27].

The predictive power of the SOC model is greatly enhanced by including the random effect

BLUPs specified by site. This indicates that for the dataset we compiled from the academic lit-

erature (i.e. plot specific values of location, dominant genus of tree, geomorphic condition,

mean DBH, mean canopy height, basal area and stem density), a substantial proportion of the

variation within the dataset is housed within site-to-site variation. Although there was a signifi-

cant correlation between the logarithmic transformations of both latitude and mean standing

basal area, the model fit is greatly enhanced by accounting for site-to-site differences. This

indicates that factors unique to each site substantially influence the accretion of SOC stocks.

For example, surrounding upland land uses that drain through the site may potentially dictate

the amount of suspended organic material that passes through mangroves, and may influence

SOC accretion rates. Further research on mangrove SOC stocks and the adjacent land uses

from a remote sensing perspective could help elucidate the degree to which these relationships

do or do not exist.

Although our hypothesis that SOC would correlate well with dominant tree species of vege-

tation was not substantiated by our modeling efforts, there are other considerations that may

have eroded the correlation between the two variables. First and foremost, mangrove stands

are often characterized by mixtures of tree species rather than a single, indisputably dominant

genus. Although certain species may be indicative of tidal position, such distinctions are rarely

ever clearly defined. Second, a lack of consistency in how the dominant genus of a plot is iden-

tified within the academic literature may have further degraded the correlation between the

two variables. Authors may estimate the dominant genus of a plot visually (e.g., canopy domi-

nants) or through measures that range in complexity from univariate measures (e.g., percent

plot basal area) to relative importance indices based on multiple considerations (e.g., density,

frequency, and canopy coverage).

Similarly, geomorphic condition as a predictive variable was likely non-significant in our

analyses due to its categorical nature and lack of quantitative basis that more closely describes

ecological processes. Furthermore, the differences in SOC seen between different geomorpho-

logical positions (i.e., marine vs. estuarine) are often presented through absolute stocks, and

significant differences in soil depth between marine and estuarine mangroves is a key factor.

In our modeling effort, we have removed the influence of soil depth which may further

account for the lack of correlation between geomorphic condition and mangrove SOC. Others

have noted the point that geomorphic condition is often qualitatively defined, and have

recently sought to institute ecologically-derived classifications of geomorphic condition for

mangroves globally [51]. It is possible that other indicators of tidal position (e.g., Euclidean

distance from shoreline or soil salinity) would correlate better to SOC, as spatial variation in

vegetation and ecosystem C stocks has been noted well within the literature [29, 36, 37, 52].

However, distance from shoreline and soil salinity are not consistently reported within the aca-

demic literature, and thus we did not incorporate them into the models of this study.

While the mixed effects model structure allows for compilation of a robust dataset from

various studies, it also presents unique challenges for model application. Prediction of man-

grove biomass C via only fixed effects has higher RMSE (i.e. higher uncertainty), but is applica-

ble throughout the region regardless of site. Conversely, prediction of mangrove biomass C via

both fixed and random effects has a lower RMSE, but is restricted to the sites for which the
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BLUPs of the random effects have been estimated. For predicting stocks at sites of interest in

close proximity to those for which random intercepts exist, inclusion of the random intercepts

may be appropriate to obtain more precise estimates; however, it is important to give judicious

consideration of whether the ecological and anthropogenic characteristics of the two ecosys-

tems are sufficiently similar to justify doing so. The random effect BLUPs can be estimated for

new sites via a full biomass inventory of a single plot (i.e. measurement of stem diameters and

conversion to biomass volume via allometric equations), and re-estimation of the model

parameters.

Model vs. site-level uncertainty

It is important to note here that that the RMSE values provided in this study are not direct rep-

resentations of final uncertainty surrounding an estimate of C stocks at the site level, but are

estimates of model uncertainty analogous to the error bounds surrounding an allometric equa-

tion. Variation in C stock estimates at the site level is a function of i) model uncertainty, ii)

measurement uncertainty, and iii) sampling uncertainty, and thus the RMSE values reported

here are only one component of uncertainty at the site level. Although studies have called for

the propagation and reporting of all three uncertainty pools, C stock appraisals most com-

monly report only the uncertainty from sampling design (i.e. plot to plot variation). The inclu-

sion of other uncertainty pools requires additional computations through error propagation,

and is thus rarely included in uncertainty surrounding site-level C stock estimates. Further-

more, estimation of the measurement uncertainty pool requires multiple measurements of sin-

gle plots, which may be deemed an inefficient use of resources.

Although some have noted that model uncertainty is the biggest contributor to site level

error bounds [53], other studies have concluded that sampling variation is the largest contribu-

tor to site-level C stock estimate error bounds, particularly for sites with high levels of variation

in species composition or forest structure [54–56]. The use of basal area as a model input

allows for more rapid sampling of plot level data (horizontal point sampling vs. conventional

DBH sampling), which will allow for the sampling of a greater number of plots per given sam-

pling effort and thus likely reduce the levels of sampling uncertainty. Others have noted that

devoting resources towards sampling of more numerous points is particularly useful for moni-

toring changes in forest C stocks, due to a more comprehensive accounting of spatial heteroge-

neity [56, 57]. Monitoring changes in forest C stocks is of particular importance for CFM

projects, as the additional sequestration of C relative to a baseline value is key to project

success.

A hybrid method of field sampling in which conventional measurements of a small subset

of plots (e.g., measurements of DBH and conversion to biomass C via allometric equations or

collection of soil cores) is conducted and followed by conversion of basal area measurements

to C stock values at numerous other plots via the models presented in this study may be three-

fold valuable for reducing site-level uncertainty. First, the conventionally-sampled plots could

be used for reparameterization of the model coefficients and thus the random effect BLUPs for

out-of-sample sites could be obtained to reduce model uncertainty. Secondly, conventionally-

sampled plot estimates of stem diameters could be converted to basal area estimates and used

to calibrate measurements of basal area, ensuring against systematic measurement error in the

basal area estimates. Finally, the streamlined nature of collecting basal area estimates via hori-

zontal point sampling (i.e., use of an angle-gauge, relascope, or similar instrument) expedites

repeated measurement of single plots, and can facilitate the inclusion of measurement uncer-

tainty in site-level error bounds. Furthermore, soil depth measurements could be collected

cheaply in conjunction with the basal area measurements, allowing for more comprehensive
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estimation of SOC stocks. Although SOC is expected to vary across soil profile depths, it has

been shown that often-times this variation is non-significant [4]. For users of the model con-

cerned with variation in SOC along the soil profile depth, applying the model estimates to just

the top 1 m of soil is appropriate.

Conclusion

As a potential means of streamlined C stock estimation in mangroves, we developed two pre-

dictive models for each of biomass-based C stock and soil-based C stocks in the Asia-Pacific.

To maximize the preservation of data, we employed a multiple-linear regression model with

mixed effects that allows spatial correlation of individual observations. The final model forms

reveal that use of basal area and latitude are significant predictors of mangrove C stocks, but

accounting for site-specific factors substantially improves our model fits. Thus, a hybrid sam-

pling approach in which a reduced number of conventionally-sampled plots paired with rapid

estimates of basal area at more numerous plots may be an efficient use of the models presented

in this study. Although our modeling efforts did not substantiate our hypothesis that SOC

stocks would correlate well with zonation in vegetation, this may be partially due to a lack of

consistent reporting of data within the academic literature. Examining other measures of tidal

position, such as Euclidean distance to shoreline, may prove more fruitful but may also

encounter challenges due to the dynamic, imprecise definition of coastlines.
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